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ABSTRACT
Question Generation (QG) is a challenging Natural Language Pro-
cessing (NLP) task which aims at generating questions with given
answers and context. There are many works incorporating linguis-
tic features to improve the performance of QG. However, similar
to traditional word embedding, these works normally embed such
features with a set of trainable parameters, which results in the
linguistic features not fully exploited. In this work, inspired by the
recent achievements of text representation, we propose to utilize
linguistic information via large pre-trained neural models. First,
these models are trained in several specific NLP tasks in order to
better represent linguistic features. Then, such feature represen-
tation is fused into a seq2seq based QG model to guide question
generation. Extensive experiments were conducted on two bench-
mark Question Generation datasets to evaluate the effectiveness
of our approach. The experimental results demonstrate that our
approach outperforms the state-of-the-art QG systems, as a result,
it significantly improves the baseline by 17.2% and 6.2% under the
BLEU-4 metric on these two datasets, respectively.
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•Computingmethodologies→Natural language generation;
Lexical semantics; • Information systems→ Question answering.
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1 INTRODUCTION
Neural Question Generation (NQG), the task of generating a ques-
tion with given a context and optionally an answer with neural
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networks, has been attracting more and more attention from the
research community in recent years. It can automatically create
Question Answering (QA) datasets, which is meaningful for QA
systems [10]. It is also useful for actively gathering users’ feedback
in AI conversational systems [45] and for generating educational
materials [16]. Typically, a QG task consists of two subtasks [49]:
(1) content selection, i.e. determining which part should be asked;
(2) question construction, i.e. generating the surface-form of the
question. The first subtask refers to the linguistic information over
the input context, such as the entity information. The second one
deals with creating grammatically correct and semantically precise
natural language questions.

Most of the current approaches address QG by applying the
sequence-to-sequence framework, composed of two parts: an en-
coder that extracts the meaning of input context and converts
it into a vector; a decoder generates a question with this given
vector [10, 54]. These sequence-to-sequence models usually incor-
porate attention mechanism and copy network, which are first
applied by Du et al. [9] and Zhou et al. [60]. To improve QG per-
formance, Kim et al. [20] proposes to separate answer and applies
another encoder to analyze it, Zhao et al. [59] attempts to leverage
paragraph-level information and Song et al. [48] utilizes multi-mode
selection methods to put more emphasis on keywords in the pas-
sage. All these works are trying to mine information from the input
context and the relevant answer. There are also studies treating
question generation and question answering as dual tasks. Tang et
al. [50] trains QA and QG simultaneously. Zhang et al. [57] uses a
QA-based evaluation method to guide the QG training.

Generating adequate and fluent natural questions is a challeng-
ing task, as it requires a deep understanding of the input text,
including the semantic meaning, the syntactic structure, the entity
information, and so on. Although previous works achieve signifi-
cant success in QG area [33], we find they do not investigate the
usage of linguistic features (e.g. POS, NER, etc.) and underrate the
power of these features.

Linguistic features carry rich information that is useful for gen-
erating questions. Harrison et al. [15] proves the advantages of
utilizing POS and NER by conducting extensive comparison experi-
ments. Zhang et al. [57] verifies that through simply incorporating
linguistic features, the model’s performance improves. As far as we
know, almost all the existing approaches of utilizing linguistic fea-
tures in QG are the same. They use a trainable matrix to transform
the linguistic feature labels into vectors, which uses the traditional
word embeddings. Unfortunately, this means has some obvious
flaws resulting in poorly leveraging these linguistic features. The
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biggest problem of this look-up embedding method is that it over-
looks the relationship among labels. For example, the NER labels of
‘Los Angeles’ is ‘LOC LOC’ (‘LOC’ is short for LOCATION). The
current approach transforms each ‘LOC’ label into the same vector
separately. Obviously, it can describe the ‘Los’ and the ‘Angeles’
are both spatial entities, but it cannot represent that ‘Los Angeles’
as a whole is also a spatial entity, which is actually we want the
model to know. Another problem of this naive linguistic usage is
that it identifies each linguistic feature label with a static vector,
resulting in poorly capturing the dynamic meaning of labels. For
example, the POS tag ‘RB’ denotes adverb. The look-up embedding
gives all ‘RB’ labels the same vector. But there may be some dif-
ferences between ‘RB’ labels since the adverb can modify a verb,
an adjective, and another adverb. To the best of our knowledge,
current approaches do not consider this meaningful information.

Motivated by this, we propose a new approach for effectively uti-
lizing linguistic features based on the pre-trained models. Through
fine-tuning, the model generates different hidden states for different
inputs, and the output layer predicts the linguistic label according
to these hidden states. If the model performs well in label predic-
tion, it means that the hidden states contain enough information
to denote the linguistic labels. In other words, these hidden states
can be used for representing linguistic labels. Utilizing these hid-
den states as representation has obvious advantages: 1) since the
representation depends on both entire context and linguistic la-
bels, it can capture the relationship between different labels, 2) the
representation of linguistic labels are dynamic, therefore, enriched
feature information can be presented.

We employ two commonly used pre-trained models, ULMFit
and BERT, as the skeleton of our linguistic representation models.
By fine-tuning these models in different NLP tasks, they become
different linguistic representation models. Besides, we invent a
novel linguistic feature customized for QG, namely QAF, which
is short for Question Answering Feature. This novel feature is
obtained from fine-tuned BERT in QA tasks. It can represent the
relationship among the answer, context and question, considering
QA and QG are dual tasks. We conduct extensive experiments on
two QG datasets, SQuAD and MARCO. The results show that our
approach significantly improves the basic model’s performance by
17.2% on SQuAD and 6.2% on MARCO, with the BLEU-4 metric.
Specifically, it achieves state-of-the-art results on both datasets with
BLEU-4 18.99 on SQuAD and 21.98 on MARCO. Detailed results
and comparisons are shown in Section 4.4.

To sum, our work makes the following contributions:

• A novel linguistic representation approach based on pre-
trained models is proposed to improve QG performance, by
utilizing linguistic features in an effective way. To the best of
our knowledge, it is the first attempt to represent linguistic
features via pre-trained models in the QG area.
• Instead of considering typical linguistic features such as
POS and NER, a new linguistic feature, QAF, is invented for
enhancing QG.
• Extensive experiments are conducted on two commonly
used QG datasets, SQuAD and MARCO, for evaluating the
performance of our proposed NQG approach. The compari-
son results over metrics: BLEU, ROUGE-L and METEOR all

demonstrate the superiority of our approach, achieving 17.2%
and 6.2% improvements with BLEU-4 metric on SQuAD and
MARCO, respectively.
• Furthermore, a detailed analysis of our approach’s effects on
question type prediction and gated self-attention alignment
is presented.
• Also, a case study about the necessity of utilizing linguistic
features with sophisticated representations is conducted.

The remainder of this article is organized as follows. Section 2
presents the related work covering QG, text representation, and
large pre-trained neural networks. Section 3 provides the problem
definition and presents the details of our proposed NQG approach.
Section 4 describes the implementation of our approach, as well as
the comparative methods, datasets and metrics adopted, followed
by results and discussions. Section 5 concludes our work.

2 RELATEDWORK
The problem addressed and the approach proposed in this paper is
related to several topics: Neural Question Generation (NQG), text
representation and NLP pre-trained models. A short overview of
these topics is presented in the following subsections.

2.1 Neural Question Generation
Driven by successes in deep learning, emerging studies on QG has
begun to develop ‘end-to-end’ models with ‘neural’ techniques to
generate question automatically. The creation of large datasets like
SQuAD [40], MARCO [32] and WikiQA [55] accelerates the trend.

Du et al. [9] and Zhou et al. [60] first propose a sequence-to-
sequence model to address the QG problem, and achieve success
compared to the previous state-of-the-art model using automatic
metrics and human evaluation. The seq2seq model incorporates
attention [1] and copy mechanism [14] for content selection, which
are more flexible than traditional rule-based approaches. Following
that, almost all the existing works are derived from the seq2seq
network.

QG can be divided into two categories: answer-aware QG and
answer-unaware QG, according to whether the target answer is
used as an input or not. In this paper, we focus on answer-aware QG.
For answer-aware QG, the answer is crucial because it serves as the
focus of asking. Sun et al. [49] proposes an answer-aware seq2seq
model, which incorporates a special decoding mode to generate
question words, based on the hidden state of the answer. However,
this method doesn’t consider lexical features and the answer struc-
ture. Kim et al. [20] separates the answer from relevant context and
utilizes an extra encoder for better utilizing the information from
both sides.

Linguistic information is also critical for generating natural and
correct questions. Harrison et al. [15] explores the benefit of em-
ploying different linguistic features, including answer signal, word
case, NER, and coreference feature. However, they do not further
investigate the usage of these linguistic features, as a result, the
value of linguistic features is not fully reflected. Liu et al. [25]
incorporates syntactic dependency tree via Graph Convolutional
Network (GCN). Khullar et al. [19] and Dhole et al. [7] attempt to
use some novel linguistic features like wh-pronouns, wh-adverbs,
and SRL structures. Unfortunately, their approaches are rule-based,
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resulting in a limited surface form of questions due to the number
of templates.

Taking wider context into consideration is practical for QG. Du
et al. [8] proposes a dataset that contains long passage QA pairs.
Song et al. [48] introduces a model that matches the answer with
the passage before generating questions, in order to learn the in-
formation from the answer and other context in the passage. Zhao
et al. [59] employs a gated self-attention network to better utilize
long passage when generating questions. In order to better link the
answer and broad document context, Tuan et al. [51] represents
relevant context via a multi-stage attention network.

In addition to encoding rich information, some researchers pay
attention to the decoding side. Interrogative words are vital for
generating question, because it guides the process of generating
and determines the question type. Sun et al. [49] first notices the
mismatch between question type and the answer. Zhou et al. [61]
and Kang et al.[18] address question word mismatch issue through
incorporating the answer information in the decoding stage. Elgo-
hary et al. [11] improves the quality of questions by rewriting the
original generated question based on the context.

Improving the training process by combining supervised and re-
inforcement learning is another trend in QG community [4]. Yao et
al. [56] deploys a model in Generative Adversarial Network (GAN)
and modify the discriminator for evaluating question authenticity
and predicting question type. Zhang et al.[57] proposes a QA-based
reward to guide QG model training, their method outperforms
previous works.

In this study, we improve QG on the encoder side. We propose a
new approach to better utilize the linguistic features, furthermore,
we explore a novel linguistic feature named QAF. Meanwhile, we ex-
ploit the whole paragraph as context to help generate high-quality
questions.

2.2 Text Representation
Text representation can be categorized into discrete and distribu-
tional representations. The judging criterion is their ability to con-
vey information. One-hot encoding is one of the simplest methods
of representation. A single word is converted into a N-dimensional
vector, filled with only one position with 1. It is straightforward but
carries little extra information. Bag of Word (BoW) [58] calculates
the count of each word. However, it neglects the order of words
in a sentence and doesn’t give any information of what the word
means. TF-IDF [37, 41] is similar to BoW although it is based on
the frequency of each word. Word Embedding [12] is a mapping
of words into low dimensional space. There are two methods to
get word embedding: Skip-gram and CBOW [29]. The word vector
from embedding encodes semantic relationships among words. The
intuition behind word embedding is that semantically similar words
are close to each other. However, there are some disadvantages of
word embedding. The word vector cannot represent different mean-
ings of a word in different contexts. Besides, it cannot represent
rare words. To tackle the issues mentioned above, a deep contextu-
alized word representation-ELMo [36] is proposed. ELMo models
both complex characteristics of word usages and the distinctions
of these usages across linguistic contexts. These word vectors are
obtained from the hidden states of a deep bidirectional language

model (biLM), pre-trained on a large text corpus. The emerging of
ELMo draws researchers’ attention to pre-trained models.

2.3 NLP Pretrained Model
The idea of the pre-trained model first arose in the computer vision
(CV) area. Training a large model from scratch requires a very large
dataset and takes a lot of time. The pre-trained model converges
fast because its weights are already optimized in some relevant
tasks.

ELMo is the first large pre-trained neural network model in
NLP. Universal LanguageModel Fine-tuning (ULMFit) [17] achieves
transfer learning in three stages: general-domain LM pre-training,
targeted task LMfine-tuning, and targeted task classifier fine-tuning.
BERT [6], short for Bidirectional Encoder Representations, consid-
ers the context from both sides of a word. It is the first unsupervised
bidirectional pre-trained model in NLP. It produces state-of-the-art
performance on 11 NLP tasks. GPT [38] and GPT-2 [39] leverage
transformer model to execute both supervised learning and un-
supervised learning to learn text representation for downstream
tasks. Since BERT is presented, there are lots of efforts on refining
it. XLM [22] is an optimized cross-lingual language model based
on BERT. RoBERTa [26] optimizes BERT with a larger number
of weights and a bigger size of dataset. DistilBERT [42] is a dis-
tilled version of BERT, which is smaller, faster, and lighter than
the original BERT. With the rapid growth of computing power, the
pre-trained neural model becomes larger and larger.

In this study, we get linguistic feature representations via pre-
trained models. Benefited from the strong learning ability of large
pre-trained models, these representations convey more useful in-
formation than previous representations.

3 OUR APPROACH
In this section, we describe the problem statement in the first place.
Then, we present the details of our approach including the baseline
model and the linguistic representation method.

3.1 Problem Statement
Given a contextC , and an answerA, we want a model to generating
a question Q whose answer is A. Formally:

Q̂ = arдmax
Q

P(Q |C,A) (1)

The context C is composed of a list of words: C = {xt }mt=0, the
answer A is a subspan ofC . The words generated in Q are from the
context C or a vocabulary V . And then we take the linguistic fea-
tures F into consideration during question generation, the problem
becomes:

Q̂ = arдmax
Q

P(Q |C,A, F ) (2)

3.2 Base Model Description
Our baseline model is a paragraph-level NQG model that mainly
adopts the structure from the previous state-of-the-art model[59].
This model generates questions based on a whole passage and an an-
swer, and uses linguistic features (POS or NER) in a traditional way.
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In the later implementation, we will append different linguistic fea-
tures with our representation approach to improve the performance
of NQG.

3.2.1 Paragraph-Level Encoder. The encoder is composed of an
embedding layer, a Recurrent Neural Network (RNN), and a gated
self-attention network. In the embedding layer, a word is repre-
sented by word vector and the answer tag, following the BIO1

tagging [60] scheme. The POS and NER tags are embedded by a
trainable parameter.

The output of embedding layer is then feed into a two-layer
bidirectional LSTM, producing a sequence of hidden states H =
(h1, ...,hT ). At each time step i , the hidden state hi is the con-
catenated representation of the forward hidden state

−→
h i and the

backward hidden state
←−
h i .
−→
h i = LSTME (ei ,

−→
h i−1)

←−
h i = LSTME (ei ,

←−
h i+1)

hi = [
−→
h i ,
←−
h i ]

(3)

The ei is the concatenation of the word embedding, answer position,
POS tag and NER tag, ei = [yi ,ai ,pi ,ni ].

The gated self-attention mechanism [53] is used on H to ag-
gregate the intra-dependency in the whole passage to refine the
passage representation at every time step.

αet = so f tmax(HTW sht )

st = Hαet

ft = tanh(W f [ht , st ])

дt = siдmoid(W д[ht , st ])

ĥt = дt ⊙ ft + (1 − дt ) ⊙ ht

(4)

in which, αet is the attention vector between H and ht , st is the self
matching representation. The self matching representation st then
is combined with original representation ht to calculate the new
enhanced self matching representation ft , and дt is a learnable gate
vector. The ⊙ is the element-wise multiplication, and ĥ = {ĥt }Tt=1
is the final gated passage-answer representation. WhileW s ,W F

andW д are trainable weight matrices.

3.2.2 Maxout Pointer Decoder. The decoder is another two-layer
unidirectional LSTM that generates words sequentially based on
the encoder’s representation and the previously generated words
at each decoding step i .

di = LSTMD (di−1,yi−1)

p(wi |(w<i )) = so f tmax(WVyi )
(5)

The di denotes the hidden state of the decoder LSTM at decoding
step i . d0 equals the final hidden state hT of the encoder. yi is
the corresponding word embedding of wi . wi is the i’th word in
generated question. The di is projected to a space with vocabulary
size dimensions by a linear layer. Then, a so f tmax function is
applied to calculate the probability distribution of all words in the
vocabulary V .
1"B", for "Begin", denotes the first token of the answer; "I", for "Inside", denotes the
tokens in the answer; "O", for "Others", denotes other tokens in the passage.

In order to better incorporating the encoded input representa-
tion, a Luong attention mechanism [27] is applied to dynamically
aggregate Ĥ to context vector ci at each decoding step.

αdi = so f tmax(ĤTW adi )

ci = Ĥ · αdi

d̂i = tanh(W c [di , ci ])

(6)

TheW a andW c are trainable weights. Then, the context vector ci
is used to update the decoder state. Thus, the equation of LSTM
decoding changed to:

di = LSTMD (d̂i−1,yi−1) (7)

The same as previousNQGmodels, to alleviate the out-of-vocabulary
(OOV) problem, pointer network [13, 43, 52] is introduced to allow
both selecting words from input and generating words from a pre-
pared vocabulary during generation. The probability of copying
words is computed based on the raw attention score, since the atten-
tion weights already indicate the importance of each input words
to the decoding word. Different from the typical pointer network,
instead of using the sum of raw attention score over input word,
we use the max raw attention score to avoid repetition problems.

ri = ĤTW adi (8)

scorecp (yi ) =


∑

xk=yi

ri,k yi ∈ Vin

−∞ yi < Vin

(9)

where ri = {ri,k }T0 , xk is the k’th word in the input passage, Vin
is the input sequence vocabulary. The copy score scorecp is con-
catenated with the generative score scoreдen =WVyi to compute
probabilities over all the words in the fixed vocabulary V and the
input sequence vocabulary Vin . Finally, the probability ofwi is:

p(wi |(w<i )) = so f tmax([scoreдen (yi ), score
cp (yi )]) (10)

3.3 Linguistic Representation Models
Although we use the long passage as the context to generate a
question, it is necessary to utilize the linguistic information as sup-
plement during generation. Previous works simply incorporate the
linguistic features by constructing a look-up based embedding for
each linguistic label, which is similar to traditional word embed-
dings. However, this naive usage cannot fully exploit the meaning
of each linguistic feature, therefore, the power of these features
is limited. To tackle this problem, we design linguistic representa-
tion models for each linguistic feature. The representations from
these sophisticated models carry more information than the previ-
ous method and boost the base model’s performance significantly,
and finally achieves the state-of-the-art. Fig. 1 illustrates the differ-
ence between the traditional linguistic feature representation and
our representation. The following parts present the approaches to
obtaining different linguistic representations.

3.3.1 ContextualizedWord RepresentationModel. There are at least
two defects of applying the look-up word embeddings to represent
the words in the input passage: (1) Each word may have more than
one meaning but only get a single vector. That means the word
vector either inaccurately represents the ‘average’ meanings of
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(a) Traditional Linguistic Feature Representation

(b) Our Linguistic Feature Representation

Figure 1: The difference between traditional linguistic fea-
ture representation and our linguistic feature representa-
tion

the word or only carries one of the meaning. (2) Word with differ-
ent context contains different meanings, the look-up embeddings
cannot dynamically capture this change. Thus, we apply deep con-
textualized word vectors in the base model. The contextualized
word vector is obtained from the hidden states of ULMFit that is
essentially a deep neural language model (LM). At first, we utilize a
AWD-LSTM2 based LMwhich is pre-trained onwikitext-1033. Then,
we fine-tune the model on QG datasets in the LM tasks. In order
to get QG-specific deep contextualized word vector, we fine-tune
the model in a question-type prediction task. In the question-type
prediction task, a prediction layer is added to the representation
model. The input is the passage followed by an answer, and the
output is the question-type such as: what, when, where, how, who,
etc.

3.3.2 NER Representation Model. Named Entity Recognition (NER)
is a subtask of information extraction that identifies the named
entities in a text. In most cases, the question answering is about
the specific entity in a passage. Thus, incorporating the NER la-
bels which directly locate the important entities is undoubtedly

2https://s3.amazonaws.com/fast-ai-modelzoo/wt103-fwd.tgz
3https://s3.amazonaws.com/research.metamind.io/wikitext

advantageous for question generation. Table 1 presents an exam-
ple demonstrating the important role of NER in QG. The standard
question is asking about religions, with the identified NER label,
the NQG model can easily locate the key position in the passage.

Table 1: An example proves the critical role of NER in ques-
tion generation (Bold denotes NER label, Underline denotes
named entity)

passage
It is used in particular in reference to
Christianity[RELIGION], Judaism[RELIGION] ,
Islam[RELIGION] and Marxism[RELIGION] .

question What religions and idea of thought is heresy cited
as being used frequently in ?

Previous works [48, 57] utilize the NER feature in the same way
as word embeddings. However, it is inferior to deal with each NER
label separately for two reasons: (1) In some cases, named entities
are phrases, therefore, only a span of NER labels can precisely rep-
resent it. (2) Different entities in the same passage may have some
relations. For example, the PERSON entity with a LOCATION
entity may imply that a person is in someplace. Therefore, it is
inappropriate to simply adopt the word embedding for NER labels.

Seeking to address the issues mentioned above, we employ a
pre-trained transformer to learn the representation of NER lin-
guistic information. The model is trained in the NER task on the
QG dataset. We obtain the NER labels in the data preprocessing
stage. The model is forced to figure out the associations between
the NER labels, as it needs such associations to tag words. After
training, the hidden states of the model are used for NER represen-
tation. The representation is then incorporated into encoding via
concatenation.

3.3.3 POS Representation Model. POS tags are a set of labels that
assign part of speech to each word, such as nouns, verbs, adverbs,
etc. These tags denote the property of the word in a certain sentence.
The instance in Table 2 is from SQuAD. By incorporating the POS
tags, the structure of this passage becomes clear, then, the NQG
model can generate a question as deep as the standard question with
confidence. Compared with NER, POS emphasizes the syntax role of
each word. Naturally, there are interactions among POS labels, such
as one qualifies another. Using look-up embedding to represent
POS labels will lose the interaction information, as the same label
owns the same representation no matter what the circumstances
are. Therefore, we apply a POS representation model to alleviate
this problem. Similar to the NER representation model, we fine-tune
a pre-trained model in the POS task and utilize the hidden states
of this model as the POS representations. We concatenate the POS
representation with other representations and feed them to the
base model.

3.3.4 QAF Representation Model. QAF, short for Question Answer-
ing Feature, is a novel linguistic feature designed for QG system in
our work. As shown in Figure. 2, QA is a dual task of QG, it gener-
ates a correct answer according to the question and relevant context.
In order to select the correct answer span in the input passage, a QA
system has to figure out the latent relationship among the question,
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Table 2: An example proves the critical role of POS in ques-
tion generation (Bold denotes POS label)

passage

According[VBG] to[TO] Titus[NNP] 3:10[CD]
a[DT] divisive[JJ] person[NN] should[MD]
be[VB] warned[VBN] two[CD] times[NNS]
before[IN] separating[VBG] from[IN] him[PRP] .

question
How many times is it suggested that you should
warn people you are in disagreement with before
parting ways ?

the passage, and the answer. This is significant for QG, since QG
aims to figure out this relationship to generate proper questions.
According to this intention, we invent the QAF linguistic feature to
indicate the relationship among passage, answer and question. We
employ a previous state-of-the-art QA model and train it on the QG
dataset. During QA task, the input of the model is the passage and
a specific question, the output is a pair of numbers indicating the
start and end position of the answer in the input passage. When
using it as a representation model, the input of the model is only
the passage, and we select parts of its hidden states as the represen-
tation of QAF. The hidden states contain QAF information because
the QA model outputs the answer position based on them.

Figure 2: QA as dual task of QG.

3.4 The Framework of QG
Figure. 3 shows the steps of training a QG model in our work. The
process can be categorized into three stages: data preprocessing,
representation model training, and QG model training. In the data
preprocessing stage, by using spaCy, the original QG data is tok-
enized, then POS and NER are performed. All the features used by
our model are calculated in this stage. In the linguistic represen-
tation model training stage, we get the representation model by
fine-tuning the pre-trained model. Different linguistic features cor-
respond to different representation models fine-tuned in different
tasks. These linguistic feature representations are incorporated into
the base QG model via concatenation. In the final stage, the QG
model takes the passage and the answer with the linguistic feature
representation as input, and outputs the proper question. After
using the new linguistic feature representation as complements in
input, the performance of QG model significantly improves.

4 EXPERIMENTS
In this section, we present the evaluation of our proposed NQG
approach. First, we briefly introduce the datasets used in this paper.
Second, we describe the implementation details of our experiments.
Then, we present the metrics we adopt. Finally, we describe the
experimental results with discussions.

4.1 Datasets
4.1.1 SQuAD. The SQuAD4 is one of the most commonly used
QG dataset. It contains 536 Wikipedia articles and more than 100k
questions posed about the articles by Amazon Mechanical Turks
crowd-workers [40]. The questions are produced by these workers
by using their own words without copying any phrase from the
passage. Later, the crowd-workers provide answers to the questions
which are spans in the passage. We use SQuADv1.1 as our QG
dataset, it provides the question, the passage and the answer in a
JSON format. Since there are about 10% data that are unavailable
in the original dataset, we treat the remaining data as the entire
dataset. Then, we randomly split the dataset into training, dev and
testing set, each set containing 87, 599, 5, 286 and 5, 285 question-
answer-passage triples respectively. After that, we employ spaCy5
for preprocessing: tokenization, POS, and NER. We also lower-case
the entire dataset for reducing the number of different words.

4.1.2 MS-MARCO. In MS-MARCO6, the 1, 010, 916 questions with
1, 026, 758 unique answers are generated by sampling queries from
Bing’s search logs[32]. Unlike SQuAD, the answers in MS-MARCO
are editorially generated, which means they are not just the span
in the passage. We use the data released by Zhou et al. [60]. There
are 74, 097, 4, 539 and 4, 539 question-answer-passage triples in the
train, dev, test set respectively. The same as the preprocessing of
SQuAD, we apply spaCy to tokenize, tag POS and NER for these
data, and then lower-case the entire dataset. Table 3 provides some
statistics on the processed datasets. The average of passage and
question lengths are about 139 and 11, 84 and 7 in SQuAD and
MS-MARCO, respectively.

4.2 Model Implementation
All of our models are implemented using PyTorch7. For the repre-
sentationmodels, there are two types of pre-trainedmodels: ULMFit
and BERT. We implement ULMFit by utilizing Fast.ai8 library which
provides a single consistent interface to train and use the ULMFit
model. It is trained for two epochs on both SQuAD and MARCO
datasets. We apply one-cycle-policy [46] to cycle the learning rate
between lower bound and upper bound during a complete run
which could keep the model from overfitting. The BERT based rep-
resentation model is made using the PyTorch implementation of
BERT made by HuggingFace9. We fine-tune BERT for five epochs
in NER, POS, and QA tasks, respectively. For optimization, we use
Adam [21] optimizer with weight decay and learning rate of 3e-5.
After training, we pick the three model with the highest accuracy

4https://rajpurkar.github.io/SQuAD-explorer/
5https://spacy.io/
6https://microsoft.github.io/msmarco/
7https://pytorch.org/
8https://www.fast.ai/
9https://github.com/huggingface/transformers

3494



Improving Neural Question Generation using Deep Linguistic Representation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 3: The Steps of Training our NQG Models.

Table 3: Statistics of train/dev/test sets for SQuAD and MARCO

Dataset total passage length avg. question length avg.
SQuAD 87599/5286/5285 139.7/142.5/129.6 11.2/11.4/11.6
MARCO 74097/4539/4539 84.3/84.4/84.3 7.0/7.0/7.0

and select the one which uses the most number of epochs as the
final model.

For the QG model, 2 layers of LSTM cells is used for the encoder
and decoder. For the encoder, the LSTM is bidirectional and the
hidden size is 300. The LSTM cell is with 0.3 dropout rate. Word
embeddings are initialized with the pre-trained 300-dimensional
Glove10 vectors [35]. The vocabulary contains the most frequent
45, 000 words in the training set. The representation of answer
positions is randomly initialized as 3-dimensional vectors. The max
length of input is set to 400. The hidden size of the decoder is 600. In
testing, we apply beam search with 10 beam size and the probability
of output ‘unknown’ word is set to 0.

10http://nlp.stanford.edu/data/glove.840B.300d.zip

4.3 Evaluation Metrics
Following existing works, we apply the traditional n-gram simi-
larity based automatic evaluation metrics: BLEU-1, BLEU-2, BLEU-
3, BLEU-4 [34], METEOR [5] and ROUGE-L [23] to evaluate our
models. BLEU is one of the earliest and the most popular auto-
matic metrics [3]. It evaluates the quality of text by calculating
the co-occurrence n-gram frequency between candidate text and
reference text. METEOR is based on the harmonic mean of unigram
precision and recall, usually, the recall weighted is higher than pre-
cision. Besides the standard exact word matching, it can evaluate
stemming and synonymy matching [2]. ROUGE-L essentially is a
Longest Common Subsequence (LCS) based metric [24]. It identi-
fies the longest co-occurring in sequence automatically. All these
metrics are computed by using the package11 released by Sharma et
al [44]. In addition, we adopt a new metric called ‘Q-Metrics’ [30],

11https://github.com/Maluuba/nlg-eval
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Table 4: Experimental results of our model comparing with previous works on SQuAD (The best value is in bold). ‘*’ is the
model that uses NER and POS in the traditional way.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Q-BLEU1
Du et al. [9] 43.09 25.96 17.50 12.28 16.62 39.75 -
Song et al. [47] - - - 13.98 18.77 42.72 -
Sun et al. [49] 43.02 28.14 20.51 15.64 - - -
Zhao et al. [59] 45.07 29.58 21.60 16.38 20.25 44.48 -
Nema et al. [31] 46.41 30.66 22.42 16.99 21.10 45.03 -
Zhang et al.* [57] - - - 17.00 21.44 46.76 -
Zhang et al. [57] - - - 18.65 22.91 45.89 -
our model
base model 44.99 29.39 21.39 16.20 20.25 44.38 53.59
+w 45.19 29.81 21.90 16.75 22.16 44.64 54.06
+q 46.95 31.51 23.29 17.82 21.73 46.98 56.29
+p 46.87 31.77 23.62 18.20 21.62 46.86 56.02
+n 47.53 31.98 23.64 18.10 21.94 47.10 56.59
+p+n 47.91 32.69 24.49 18.99 22.15 47.53 56.68
+p+n+w 47.82 32.52 24.21 18.66 22.10 47.45 56.61
+p+n+w+q 48.25 32.99 24.63 18.96 22.39 47.92 57.05

Table 5: Experimental results of our model comparing with previous works on MARCO (The best value is in bold).

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Du et al. [9] - - - 10.46 - -
Duan et al. [10] - - - 11.46 - -
Sun et al. (answer-focused model) [49] 46.59 33.46 24.57 18.73 - -
Sun et al. (hybrid model) [49] 48.24 35.95 25.79 19.45 - -
Zhao et al. (paragraph level) [59] - - - 17.24 - -
Ma et al. [28] 50.33 37.10 27.23 20.46 24.69 49.89
our model
base model 54.50 37.24 27.29 20.61 25.44 56.41
+w 55.13 37.73 27.48 20.72 27.88 57.72
+q 55.27 37.64 27.30 20.42 26.03 56.79
+p 55.45 38.11 27.92 21.17 26.18 57.10
+n 55.52 38.28 28.02 21.18 26.30 57.36
+p+n 55.83 38.52 28.38 21.55 26.25 57.58
+p+n+w 56.19 39.07 28.90 21.98 26.70 57.96
+p+n+w+q 55.37 38.10 28.09 21.35 26.28 57.47

which is specifically designed for evaluating QG12. We only use ‘Q-
BLEU1’ which has the highest correlation with human evaluation
on SQuAD. Following Nema et al., we set wner to 0.41, wimp to
0.36,wsm to 0.03,wqt to 0.20 and δ to 0.66 to calculate Q-BLEU1.

4.4 Results and Discussions
4.4.1 Main Results Analysis. On SQuAD, we compare the BLEU,
METEOR, ROUGE-L and Q-BLEU scores of our models with several
previous methods in Table 4, including Du et al. [9], Song et al. [47],
Sun et al. [49], Zhao et al. [59], Nema et al. [31] and Zhang et al. [57].
Du et al. is one of the first to apply deep learning in QG task. Song
et al. is the first to use a query-based generative model for solving
both tasks of QG and QA. Sun et al. and Zhao et al. improve the
QG performance through the question type and long context views.

12https://github.com/PrekshaNema25/Answerability-Metric

We mainly adopt Zhao et al.’s model architecture as the base model.
And we add a linear layer and a dropout layer at the encoder to
avoid overfitting and remove < SOS > and < EOS > tokens of the
input passage. Zhang et al.’s work is the previous state-of-the-art.
The comparative models in this work are listed as follows:

• base model: the base model (mentioned in Section 3.2)
• + w: the base model + contextualized word representation
model (Section 3.3.1)
• + q: the base model + QAF representation model (Section
3.3.4)
• + p: the base model + POS representation model (Section
3.3.3)
• + n: the base model + NER representation model (Section
3.3.2)
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• + p + n: the base model + POS representation model + NER
representation model
• + p + n + w: the base model + POS representation model +
NER representation model + contextualized word represen-
tation model
• + p + n + w + q: the base model + POS representation model
+ NER representation model + contextualized word repre-
sentation model + QAF representation model

(a) Accuracy of Question Type on SQuAD

(b) Accuracy of Question Type on MARCO

Figure 4: The improvements on question type accuracy via
incorporating new linguistic representations

As shown in Table 4, overall, by incorporating new feature rep-
resentations, our model obtains obvious performance gain over
the base model, with at most 17.2% (2.79 points) gain under met-
ric BLEU-4, about 10.5% (2.14 points) gain with METEOR, about
7.9% (3.54 points) gain with ROUGE-L and 3.46 points gain with
Q-BLEU1 on SQuAD. In addition, compared with the model that
uses linguistic features in the traditional way (the ‘*’ in Table 4),
our model outperforms it over all the metrics. Which, demonstrates
the superiority of our approach. Furthermore, we can tell from
Table 4 that the special designed linguistic feature QAF, improves

(a) Gated self-attention map of base model

(b) Gated self-attention map of base model (+ p + n + w + q)

Figure 5: Gated self-attention map (the darker the grid, the
higher the attention score). The standard question of this ex-
ample is ‘What religions and idea of thought is heresy cited
as being used frequently in ?’ The words in the red box are
the relevant answer.

the Q-BLEU1 scores significantly. The Q-BLEU1 metric highly cor-
responds to the answerability of the generated questions. Finally,
we compare it with the previous works. Our model outperforms the
existing state-of-the-art method in all the metrics except METEOR.

3497



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Wei Yuan, Tieke He, and Xinyu Dai

Table 6: Question type proportions on two datasets

Dataset What Which Where When Who Why How Others
SQuAD 43.36% 4.70% 3.79% 6.27% 9.44% 1.39% 9.39% 21.66%
MARCO 44.29% 1.11% 4.16% 1.52% 1.47% 1.88% 16.28% 29.29%

We also conduct comparative experiments on MARCO to further
measure the effectiveness of our method. The same as SQuAD,
we do paragraph-level experiments on MARCO. It means that the
input is a whole paragraph related to the answer and question,
rather than a single sentence. Table 5 presents the experimental
results on MARCO. First, we compare BLEU-1, BLEU-2, BLEU-3
and BLEU-4 scores reported by Du et al. [9], Duan et al. [10], Sun
et al. [49] and Zhao et al. [59]. As can be seen from Table 5, our
models obtain dominating performance on MARCO with BLEU-1,
BLEU-2, BLEU-3, BLEU-4. Meanwhile, the base model assembled
with NER, POS and contextualized word representation models
achieves the state-of-the-art results on MARCO, with BLEU-1 56.19,
BLEU-2 39.07, BLEU-3 28.90, BLEU-4 21.98, and ROUGE-L 57.96. To
mention, the base model with contextualized word representation
model outperforms all the other models with METEOR 27.88 on
MARCO.

4.4.2 Question Type Analysis. As we know, question type (also
called interrogative word) is vital for question generation, because
it guides the remain generating process and determines part of
question meaning. Only a slight change in the interrogative word
will lead to giant changes in the whole question’s meaning. For
example, the only difference between ‘What was a major reason
and justification for the European wars of religion ?’ and ‘Who was
a major reason and justification for the European wars of religion ?’
is the question type, however, the meaning of these two sentences
are totally different. Therefore, if the question type is incorrect, the
semantic of generated question will drift far away. We can make a
better decision on which question is correct with the context and
relevant answer. If the context and the answer emphasize an event,
the prior question type is correct. If the context and the answer are
about a person, the second question type is correct.

Asmentioned above, the context and relevant answers are crucial
for generating proper interrogative words. By applying the new
linguistic feature representations, our method provides abundant
linguistic information for the NQG model. Therefore, our method
can enhance the model’s ability to generate correct question type.

On the SQuAD and MARCO, 7 most common question words
make upmost of the questions (78% on SQuAD and 70% onMARCO).
Table 6 is the statistic of question types on these two dataset. There-
fore, we divide question types into 8 categories, including the most
common 7 question types and an additional type ‘others’. Then, we
calculate the accuracy of question type with the base model and
‘base model + p + n + w + q’ model on both datasets. Fig. 4 shows
the accuracy of different question types on SQuAD and MARCO in
detail. Our model outperforms the baseline for most question types
on SQuAD and MARCO.

4.4.3 Gated Self-Attention Analysis. As a paragraph contains more
context information than a sentence, taking a paragraph as in-
put may better guide NQG models. However, RNNs suffer greatly

from vanishing or exploding gradients when handling long se-
quences, which limits the usage of paragraphs. Therefore, a gated
self-attention is introduced to aggregate information from the
whole passage. Before gated self-attention applied to QG, the per-
formance of taking paragraphs as input is usually worse than a
sentence for NQG tasks [59].

In our work, we do not specifically refine the gated self-attention
network, but as we enrich the input feature information, the gated
self-attention works more effectively than before, since it has more
information to refer to. To demonstrate this finding, we visualize
the self-attention alignment vector for one example of two models
in Fig. 5. This example corresponds to the example in Table 1. As
we can see, in Fig. 5b, the alignment distribution concentrates on
the answer tokens and the most relevant context ‘violations of
important religious teachings’. While the alignment distribution in
Fig. 5a concentrates near the answer span but it is a little scattered.

4.4.4 Case Study. In Table 7, we provide two examples for which
the linguistic features help the NQG model generate a proper ques-
tion. These examples demonstrate that when rich feature infor-
mation is presented, the model will generate question containing
relatively accurate information comparing with no feature pre-
sented.

In the first example, firstly, the standard question is asked about
‘band’, without linguistic features, the base model generates ques-
tion about ‘song’, which is obviously improper. Meanwhile, from
the content of the base model’s question, we can see that the model
does not know ‘paul gascoigne’ is a whole entity. So, the question
generated by the base model is confusing. In contrast, after incor-
porating our linguistic feature representation models, the model
generates the question correctly both in the theme and the semantic
meaning.

The second example is relatively challenging because it contains
so many named entities and most of these entities are not a single
token. As mentioned in Section 3.3, in this situation, in order to gen-
erate correct questions, the linguistic information need to not only
identify the linguistic features, but also represent the relationship
among these entities. Without powerful linguistic representation,
the base model is confused by the vast crowd entities. Thus, the
meaning of base model’s question is not intact. It contains an un-
necessary entity ‘2007’ but misses the important entity ‘newcastle’.
On the contrary, by utilizing the new linguistic feature representa-
tions, the model generates a question whose meaning is the same
as the standard question. It generates the whole entity sequence
‘newcastle international airport’ in the question.

5 CONCLUSION
In this paper, we propose a novel linguistic representation approach
that is based on large pre-trained neural networks to tackle the
question generation problem. Compared with previous linguistic
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Table 7: Examples that comparing the results of the base QG model with our QG model. (Bold denotes NER label, Underline
denotes named entity, Boxed denotes the answer, Bold and italic denotes the merits of our model results. Taking readability
into consideration, we do not show other linguistic labels in this table.)

paragraph

lindisfarne[ORG] are a folk-rock group with a strong tyneside[GPE] connection .
their most famous song , " fog on the tyne[GPE] " ( 1971[DATE] ) , was covered
by geordie[NORP] ex-footballer paul gascoigne[PERSON] in 1990[DATE]. venom , reckoned
by many to be the originators of black metal and extremely influential
to the extreme metal scene as a whole , formed in newcastle[GPE] in 1979[DATE].
folk metal band skyclad[ORG] , often regarded as the first folk metal band ,
also formed in newcastle[GPE] after the break-up of martin walkyier thrash metal
[PERSON] band , sabbat . andy taylor[PERSON] , former lead guitarist of duran duran[PERSON]
was born here in 1961[DATE]. brian johnson[PERSON] was a member of local rock band
geordie[NORP] before becoming the lead vocalist of ac/dc[ORG] .

standard question what band is considered by many to be the first black metal group ?
base model QG what famous song was covered by geordie ex-footballer paul ?
base model (+ p + n + w + q) QG what was the name of the band that was formed by paul gascoigne ?

paragraph

newcastle international airport[FAC] is located approximately 6 miles[QUANTITY] ( 9.7 km [QUANTITY])
from the city centre on the northern outskirts of the city near ponteland[GPE] and
is the larger of the two[CARDINAL] main airports serving the north east[LOC] . it is connected
to the city via the metro light rail system and a journey into newcastle city[GPE]
centre takes approximately 20 minutes[TIME] . the airport handles over five million[CARDINAL]
passengers per year , and is the tenth[ORDINAL] largest , and the fastest growing regional
airport in the uk[GPE] , expecting to reach 10 million[CARDINAL] passengers by 2016[DATE] , and
15 million[CARDINAL] by 2030[DATE]. as of 2007[DATE] , over90 [CARDINAL] destinations are available worldwide .

standard question how many destinations are available worldwide from newcastle ’s airport ?
base model QG in 2007 , how many destinations are available worldwide ?
base model (+ p + n + w + q) QG how many destinations are available in newcastle international airport ?

feature usages, our approach can not only represent more abundant
linguistic information, but also identifies the relationship among
these linguistic features, which is infeasible before. In addition, a
new linguistic feature, QAF, is invented for the QG task. We demon-
strate the effectiveness of this approach by conducting extensive
experiments on two most commonly used QG dataset, SQuAD and
MARCO. The results show that our approach achieves state-of-the-
art performance on both datasets. We also prove that our approach
is applicable to improving the accuracy of question type prediction
and is beneficial to gated self-attention alignment. Finally, two ex-
amples are presented to further illustrate the advantages of utilizing
our approach.
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